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X-ray diffraction has the potential to provide rich information about
the structural dynamics of macromolecules. To realize this potential,
both Bragg scattering, which is currently used to derive macromo-
lecular structures, and diffuse scattering, which reports on correla-
tions in charge density variations, must be measured. Until now,
measurement of diffuse scattering from protein crystals has been
scarce because of the extra effort of collecting diffuse data. Here, we
present 3D measurements of diffuse intensity collected from crystals
of the enzymes cyclophilin A and trypsin. The measurements were
obtained from the same X-ray diffraction images as the Bragg data,
using best practices for standard data collection. To model the
underlying dynamics in a practical way that could be used during
structure refinement, we tested translation–libration–screw (TLS), liq-
uid-like motions (LLM), and coarse-grained normal-modes (NM) mod-
els of protein motions. The LLM model provides a global picture of
motions and was refined against the diffuse data, whereas the TLS
and NM models provide more detailed and distinct descriptions of
atom displacements, and only used information from the Bragg data.
Whereas different TLS groupings yielded similar Bragg intensities,
they yielded different diffuse intensities, none of which agreed well
with the data. In contrast, both the LLM and NM models agreed
substantially with the diffuse data. These results demonstrate a re-
alistic path to increase the number of diffuse datasets available to the
wider biosciences community and indicate that dynamics-inspired
NM structural models can simultaneously agree with both Bragg
and diffuse scattering.
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X-ray crystallography can be a key tool for elucidating the
structural basis of protein motions that play critical roles in

enzymatic reactions, protein–protein interactions, and signaling
cascades (1). X-ray diffraction yields an ensemble-averaged picture
of the protein structure: each photon simultaneously probes mul-
tiple unit cells that can vary because of internal rearrangements or
changes to the crystal lattice. Bragg analysis of X-ray diffraction
only yields the mean charge density of the unit cell, however, which
fundamentally limits the information that can be obtained about
protein dynamics (2, 3).
An inherent limitation in Bragg analysis is that models with

different concerted motions can yield the same mean charge den-
sity (4). The traditional approach assumes a single structural model
with individual atomic displacement parameters (B factors). Given
enough data, anisotropic displacement parameters can be modeled.
When the data are more limited, translation–libration–screw (TLS)
refinement, which models rigid-body motions of subdomains (5), is
often used [22% of Protein Data Bank (PDB) depositions (6, 7)].
Variations in the TLS domains can predict very different motions
that agree equally well with the Bragg data (8, 9).
Bragg analysis can be combined with additional information to

model coupled motions in proteins. Patterns of steric clashes be-
tween alternative local conformations (10) can suggest certain
modes of concerted motion, but the atomistic details may only be

reliably (yet indirectly) identified at high resolution. Time-averaged
ensemble refinement (11) is another possibility, but it is compli-
cated by the use of a TLS model to account for crystal packing
variations (11). Solid-state NMR experiments (12) and long-time-
scale molecular dynamics (MD) simulations (13–15) can be used to
probe the structural basis of crystal packing variations and internal
protein motions.
Extra information about protein motions can also be obtained in

the X-ray crystallography experiment itself by analysis of diffuse
scattering. Diffuse scattering arises when crystal imperfections
cause X-rays to be diffracted away from Bragg reflections. When
the deviations are due to crystal vibrations, they can be described
using textbook temperature diffuse scattering theory (see, e.g., ref.
16). When each unit cell varies independently, the diffuse intensity
is proportional to the variance in the unit cell structure factor (17),
which describes correlations in the charge density variations. This
assumption is appropriate when analyzing the broadly distributed
diffuse intensity that corresponds to small correlation lengths (18–
21), as the contribution of inter-unit cell atom pairs in this case is a
small fraction of the total signal.
Several approaches have been used to connect macromolecular

diffuse scattering data to models of protein motion and lattice
disorder. Peter Moore (22) has emphasized the need to validate
TLS models using diffuse scattering, as has been performed in a
limited number of cases (8, 23, 24). Good agreement with the data

Significance

The structural details of protein motions are critical to under-
standing many biological processes, but they are often hidden to
conventional biophysical techniques. Diffuse X-ray scattering can
reveal details of the correlated movements between atoms;
however, the data collection historically has required extra effort
and dedicated experimental protocols. We have measured 3D
diffuse intensities in X-ray diffraction from CypA and trypsin
crystals using standard crystallographic data collection techniques.
Analysis of the resulting data is consistent with the protein mo-
tions resembling diffusion in a liquid or vibrations of a soft solid.
Our results show that using diffuse scattering to model protein
motions can become a component of routine crystallographic
analysis through the extension of commonplace methods.

Author contributions: A.H.V.B., N.K.S., J.S.F., andM.E.W. designed research; A.H.V.B., L.L., A.G.,
and M.E.W. performed research; A.H.V.B., L.L., A.S.B., N.K.S., and M.E.W. contributed new
reagents/analytic tools; A.H.V.B., L.L., J.S.F., and M.E.W. analyzed data; and A.H.V.B., L.L., A.G.,
A.S.B., N.K.S., J.S.F., and M.E.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

Data deposition: The atomic coordinates and structure factors have been deposited in the
Protein Data Bank, www.pdb.org (PDB ID codes 5F66 and 5F6M).
1To whom correspondence may be addressed. Email: jfraser@fraserlab.com or mewall@
lanl.gov.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1524048113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1524048113 PNAS | April 12, 2016 | vol. 113 | no. 15 | 4069–4074

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1524048113&domain=pdf
http://www.pdb.org
http://www.rcsb.org/pdb/explore/explore.do?structureId=5F66
http://www.rcsb.org/pdb/explore/explore.do?structureId=5F6M
mailto:jfraser@fraserlab.com
mailto:mewall@lanl.gov
mailto:mewall@lanl.gov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1524048113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1524048113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1524048113


has previously been observed for liquid-like motions (LLM) models
(18–21), which provide a softer model of the protein than the TLS
model. In the LLMmodel, the atoms in the protein are assumed to
move randomly, like in a homogeneous medium; the motions were
termed “liquid-like” by Caspar et al. (19) because the correlations
in the displacements were assumed to fall off exponentially with the
distance between atoms.
Normal-modes (NM) models also treat the protein as a softer

substance than the TLS model, but treat it as a solid. Normal-mode
analysis (NMA) provides a more detailed picture of the confor-
mational ensemble than the LLM model, enabling a direct con-
nection to putative mechanisms of protein function (25). The NM
refinement methods that have been developed for Bragg analysis
use few additional parameters (26–30); however, these methods are
not currently available in the standard builds of the major re-
finement software. Reasonable qualitative agreement previously
has been seen using NM to model diffuse intensity in individual
diffraction images (31, 32). More recently, the fit of alternative
coarse-grained elastic network models to diffuse scattering data of
staphylococcal nuclease has been investigated (33).
There is also a long-standing interest both in using diffuse scat-

tering to validate improvements in MD simulations and in using
MD to derive a structural basis for the protein motions that give
rise to diffuse scattering (13, 31, 34–39). Recent advances in com-
puting now enable microsecond duration simulations (13) that can
overcome past barriers to accurate calculations seen using 10-ns or
shorter MD trajectories (35, 38).
Despite the fact that diffuse scattering analysis is relatively well

developed in small-molecule crystallography (40) and materials
science (3), it has been underused in protein crystallography. There
are relatively few examples of diffuse data analyzed using individual
diffraction images from protein crystallography experiments, in-
cluding studies of tropomyosin (41, 42), 6-phosphogluconate de-
hydrogenase (43), yeast initiator tRNA (44), insulin (19), lysozyme
(20, 23, 24, 31, 32), myoglobin (38), Gag protein (45), and the 70s
ribosome subunit (46). Moreover, there are an even smaller num-
ber of examples involving complete 3D diffuse datasets; these in-
clude studies of staphylococcal nuclease (21) and calmodulin (18).
To exploit diffuse scattering for modeling protein motions, there

is a pressing need to increase the number of proteins for which
complete 3D diffuse datasets have been experimentally measured.
Conventional data collection procedures use oscillation exposures
to estimate the full Bragg intensities. In contrast, the complete 3D
datasets measured by Wall et al. (18, 21) used specialized methods
for integrating 3D diffuse data from still diffraction images. Similar
methods now can be generalized and applied to other systems using
modern beamlines and X-ray detectors. In particular, the recent
commercial development of pixel-array detectors (PADs), which
possess tight point-spread functions and single-photon sensitivity
(47), have created opportunities for measuring diffuse scattering as
a routine tool in protein crystallography experiments using more
conventional data collection protocols.
Here, we present diffuse scattering datasets for the human pro-

line isomerase cyclophilin A (CypA) and the bovine serine protease
trypsin. These datasets substantially increase the amount of exper-
imental 3D diffuse scattering data available to the macromolecular
crystallography community, providing a necessary foundation for
further advancement of the field (48). To assess the potential for
routine collection of diffuse datasets in crystallography, rather than
expending a great deal of effort in optimizing the diffuse data and
collecting still images (18, 21), we used oscillation images obtained
using best practices for high-quality Bragg data collection. The
resulting datasets yield 3D diffuse data that can discriminate
among alternative TLS refinements (8), LLM models (19, 20), and
NM models (32–34). Moreover, the agreement of the NM models
with both Bragg and diffuse scattering data suggests a path forward
for using both data sources simultaneously with a small number of
variables. Our results demonstrate that diffuse intensity can, and

should, be measured in a typical X-ray crystallography experiment
and indicate that diffuse scattering can be applied broadly as a tool
to understand protein motions.

Results
Experimental Diffuse Data Show Crystallographic Symmetry. We
obtained nearly complete 3D anisotropic diffuse datasets D′ for
CypA and trypsin using a PAD detector with synchrotron radiation
(Methods, Fig. 1, and SI Appendix, Fig. S1), and used the Friedel
and Laue group symmetry to quantify the level of crystallographic
symmetry. We averaged intensities between Friedel pairs to create
a symmetrized map D′F and calculated the linear correlation CCF
between D′ and D′F. For CypA and trypsin, CCF = 0.90 and 0.95,
respectively. We averaged P222-related reflections (corresponding
to the P212121 space group of both CypA and trypsin) to produce
the Laue symmetrized intensities, D′L. The linear correlation CCL
was then computed between D′ and D′F, yielding CCL = 0.70 for
CypA and CCL = 0.69 for trypsin. These correlations indicate the
experimental diffuse intensity follows the Bragg peak symmetry.

TLS Models Yield Low Correlation with Diffuse Scattering Data. To
investigate how well TLS models agree with the molecular motions
in the CypA crystal, we compared the experimental diffuse data to
intensities calculated from three alternative TLS models: “Phenix,”
“TLSMD,” and “whole-molecule” (SI Appendix, Fig. S2 A–D).
Although all three models predict different motions, the R factors
are very similar: R,R-free = 16.4%, 18.1% for the whole-molecule
and Phenix models; and 16.2%, 18.1% for the TLSMDmodel. The
correlations between the calculated diffuse intensity for these
models and the anisotropic experimental data are low: 0.03 for the
phenix model; 0.04 for the TLSMD model; and 0.14 for the whole-
molecule model. In addition, the pairwise correlations of the cal-
culated diffuse intensities are low: 0.066 for whole-molecule/
TLSMD; 0.116 for whole-molecule/Phenix; and 0.220 for Phenix/
TLSMD.
Like CypA, the three trypsin TLS models (SI Appendix, Fig. S2

E–H) yielded very similar R,R-free values: 15.1%, 16.7% for the
whole-molecule model; 15.3%, 16.6% for the Phenix model; and

Fig. 1. Steps in diffuse data integration. (A) Raw CypA diffraction images
are processed (B) to remove Bragg peaks and enable direct comparisons of
pixel values to models. (C) Pixels in diffraction images are mapped to re-
ciprocal space and values of diffuse intensity are accumulated on a 3D lat-
tice; each diffraction image produces measurements of diffuse intensity on
the surface of an Ewald sphere. (D) The data from individual images are
combined and symmetrized to yield a nearly complete dataset (isosurface at
a value of 65 photon counts in the total intensity, before subtracting the
isotropic component).
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15.2%, 16.6% for the TLSMD model. Correlations between the
calculated and experimental diffuse intensities are again low:
0.02 for the Phenix and TLSMD models, and 0.08 for the whole-
molecule model. Comparisons of the calculated anisotropic dif-
fuse intensity show that the whole-molecule motion is dissimilar
to both the Phenix and TLSMD predictions (CC = 0.03 and 0.05,
respectively). In contrast, the Phenix and TLSMD models yield
much more similar diffuse intensities (CC = 0.515). The rela-
tively high correlation between these models is consistent with
the similarity in the TLS groups (SI Appendix, Fig. S2 F–H). The
low correlation of the CypA and trypsin TLS models with the
diffuse data suggests that the protein motions might be corre-
lated on a shorter length scale than provided by these models.

LLM Models Yield Substantial Correlation with Diffuse Scattering
Data. One model that accounts for short-range correlations is
LLM (19, 20). The LLM model assumes that atomic displacements
are uncorrelated between different unit cells, but are correlated
within the unit cells. The correlation in the displacements is as-
sumed to decay exponentially as e−x=γ, where x is the separation of
the atoms, and γ is the length scale of the correlation. The dis-
placements of all atoms are assigned a SD of σ. The LLM model
previously has been refined against 3D diffuse intensities obtained
from crystalline staphylococcal nuclease (21) and calmodulin (18),
yielding insights into correlated motions.
We refined isotropic LLM models of motions in CypA and

trypsin against the experimental diffuse intensities (Methods). The
CypA model was refined using data in the resolution range of 31.2–
1.45 Å, and the trypsin model using 68- to 1.46-Å data. For CypA,
the refinement yielded γ = 7.1 Å and σ = 0.38 Å with a correlation
of 0.518 between the calculated and experimental anisotropic in-
tensities. The highest correlation between data and experiment
occurs in the range of 3.67–3.28 Å, where the value is 0.74 (Fig. 2A).
For the trypsin dataset, the refinement yielded γ = 8.35 Å and σ =
0.32 Å with a correlation of 0.44, which is lower than for CypA. The
peak value is 0.72 in the resolution range of 4.53–4.00 Å (Fig. 2B).
The refined LLM models also were compared with the data

using simulated diffraction images. Images corresponding to frame
number 67 of the CypA data were obtained using the LLM model
(Fig. 3A) and the 3D diffuse data (Fig. 3B). The main bright
features above and below the origin are similar between the two.

Many of the weaker features also appear to be similar, both at
high and low resolution. The similarity is diminished but still ap-
parent for images obtained for frame number 45 of trypsin (SI
Appendix, Fig. S3). These simulations provide a visual confirma-
tion of the substantial correlations obtained for the 3D diffuse
intensity (see SI Appendix, Fig. S1, for visualization comparisons of
the LLM model to the diffuse data in 3D).

Normal Modes Can Model Both Diffuse and Bragg Scattering Data. To
assess the potential of NMA to be developed for diffuse scattering
studies, we developed coarse-grained elastic network models of the
CypA and trypsin unit cells. The Cα coordinates and B factors for
the NM models of diffuse scattering are by definition identical to
those derived from the Bragg data (Methods). To assess the
agreement of specific NM-derived conformational variations with
the Bragg data, we eliminated the B factor constraint and gener-
ated 50-member ensembles from the 10 lowest-frequency nonzero
modes (Methods). To more accurately model the Bragg data, we
adjusted the overall spring constant and applied an additional
uniform isotropic B factor to all atoms (Methods and SI Appendix,
Fig. S4). The correlations were high across resolution shells (Fig. 2
C and D), yielding overall R factors of 38% (CypA) and 31%
(trypsin) (SI Appendix, Tables S1 and S2). We also calculated the
predicted diffuse intensity from the NM models: the correlation of
the CypA model with the data is 0.41 in the resolution range of
31.2–1.45 Å, and the correlation of the trypsin model with the data
is 0.38 in the resolution range of 68–1.46 Å. The agreement with
the data is substantial within individual resolution shells (Fig. 2).
The NM simulated diffraction image for CypA (Fig. 3C) shows
bright features that are found in the data (Fig. 3B). The relative
strength at high versus low resolution is greater than in the data,
however, suggesting that this NM model is too rigid; this discrep-
ancy might be addressed by softening the intraresidue interactions
and optimizing the model against the diffuse scattering data di-
rectly. The comparisons of simulated diffraction images for trypsin
are consistent with the findings for CypA (SI Appendix, Fig. S3).

Discussion
Diffuse X-ray scattering is a potentially valuable yet little exploited
source of information about macromolecular dynamics. Diffuse
intensities can double the total number of measured data points in

Fig. 2. Agreement of models of protein motions with diffuse and Bragg data. (A and B) Linear correlation coefficients (CCs) between diffuse data and LLM
(red bars) or NM models (blue bars) computed by resolution shell for (A) CypA and (B) trypsin. (C and D) Correlations and R factors between Bragg data and
NM models computed by resolution shell for (C) CypA and (D) trypsin. Agreement factors for the diffuse and Bragg data were computed using LUNUS (60)
and Phenix (67), respectively.
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the crystallographic experiment while providing a parallel dataset
against which structural dynamical models can be refined or val-
idated. Until now, measurement of 3D diffuse scattering data only
has been pursued in dedicated efforts requiring extra still diffrac-
tion images and substantial optimization of experimental design.
The present collection of two datasets obtained using oscillation
images using best current practices in room temperature protein
crystallography (49), and the use of the data in evaluating TLS,
LLM, and NM models, illustrates the potential for using diffuse
scattering to increase understanding of protein structure variations
in any X-ray crystallography experiment, representing a significant
step toward moving diffuse scattering analysis into the mainstream
of structural biology.
Diffuse data obtained for CypA and trypsin can distinguish

among the TLS, LLM, and NM models of motions. However, the
agreement with the data are somewhat lower than in previous
LLM models of 3D diffuse scattering (18, 21). In this study, the
correlation of the LLM model with the data was 0.518 in the range
of 31.2–1.45 Å for CypA, and 0.44 in the range of 68–1.46 Å for
trypsin; in comparison, the correlation was 0.595 in the range of
10–2.5 Å for staphylococcal nuclease (21) and 0.55 in the range of
7.5–2.1 Å for calmodulin (18). Some possible explanations for the
lower agreement for CypA and trypsin include the following: the
use of higher-resolution data in the present studies; that LLM
might be a better description of motions in staphylococcal nuclease
and calmodulin than in CypA and trypsin; and that the measure-
ments might have been more accurate in the past experiments, as
the data collection was tailored for diffuse scattering. An apparent
alignment of the residual intensity distribution with the unit cell
axes (SI Appendix, Fig. S2 C and F) suggests that an anisotropic
LLM model might be more appropriate than an isotropic LLM
model for CypA and trypsin.
The low correlation of the present TLS models with the diffuse

intensity for CypA and trypsin suggests that the variations in the
protein crystal might involve motions that are correlated on a shorter
length scale than accounted for by these models. TLS models with
large rigid domains might be more appropriate for interpreting
small-scale diffuse features in the immediate neighborhood of Bragg
peaks, similar to the rigid-body motions model of Doucet and Benoit
(23). Methods to integrate the small-scale features in protein crys-
tallography onto a finer 3D reciprocal space grid than used here do
exist (18) and could be used to investigate this possibility.
The agreement of the LLM models with 3D experimental dif-

fuse data across multiple systems warrants further consideration
for using diffuse scattering in model refinement and validation. A
key finding is that the agreement of the LLM models with the
diffuse data are higher than the TLS models, which currently are
used widely in protein crystallography. The LLM model implies
that the motions of atoms separated by more than 7–8 Å are rel-
atively independent, and that atoms that are closer to each other
move in a more concerted way. Interestingly, this length scale of
the correlations is comparable to the size of the TLS domains;
however, compared with the sharp domains of the TLS model, the
exponential form of the correlations indicates that there is a smooth
spatial transition between the correlated and uncorrelated atoms in

the LLM. The smooth transition might be key to the increased
agreement of the LLM with the diffuse data compared with the
rigidly defined regions of the TLS model.
The agreement of the NM models with the data assessed using

either correlations across complete datasets (Fig. 2) or simulated
diffraction images (Fig. 3 and SI Appendix, Fig. S3) is substantial
but slightly less than for the LLM models. However, it is important
to interpret this comparison in light of the fact that the covariance
matrices of the NM models were normalized to agree with the
Bragg data and not parameterized against the diffuse data (Meth-
ods), whereas the LLM model is parameterized against the diffuse
data. In addition, in the coarse-grained NMmodel, the residues are
treated as rigid; relaxing this approximation should lead to more
accurate models. The agreement with the Bragg data is currently
limited by the fact that the parameter optimization used only the
refined Cα positions and B factors to agree with the Bragg data and
that heteroatoms, such as solvent, were not included in the calcu-
lations. Collectively, these results point to the potential for normal
modes to be refined jointly against Bragg and diffuse scattering
data as an alternative atomic displacement model, replacing TLS or
individual B factors.
Overall, the 3D diffuse scattering data obtained here for CypA

and trypsin, and previously for staphylococcal nuclease (21) and
calmodulin (18), suggest that the protein structure varies more like
a soft material than like a collection of independent rigid domains.
An important consideration in developing these future refinement
methods is to maintain a key advantage of TLS refinement at lower
resolutions: the introduction of relatively few additional parameters
for refinement. This requirement also would be satisfied by NMA,
which can have a low computational cost and general applicability,
making it a promising model for integrating diffuse scattering into
crystallographic model building and refinement (48). Whether this
pursuit is well-motivated hinges on whether new biological insights
can be gained from atomic displacements generated by NMmodels
refined against Bragg and diffuse data. Indeed, although use of
TLS in model refinement is now widespread, it scarcely has been
used to generate biological hypotheses (for exceptions, see refs. 50
and 51). In contrast to TLS models, elastic network NM models
have been widely used to draw functional inferences (52). Both the
encouraging agreement of the NM models with the diffuse scat-
tering and the potential for NM models to yield insights about the
importance of conformational dynamics in protein function provide
a strong motivation for further developing NM models for protein
X-ray crystallography.
Diffuse scattering also can be used to validate models of

molecular motions other than those considered here, including
models produced by ensemble refinement (11); multiconformer
modeling performed by discrete (53, 54) or continuous (18, 55, 56)
conformational sampling; and MD simulations (13–15, 31, 35–39,
57). In particular, MD simulations now provide sufficient sampling
to yield robust calculations of diffuse intensity (13), and these can
be used to consider a myriad of intramolecular motions (e.g., loop
openings and side-chain flips) (58) and lattice dynamics. Polikanov
and Moore (46) recently have demonstrated the importance of
lattice vibrations in explaining experimental diffuse scattering

Fig. 3. Simulated diffraction images for CypA frame
67 obtained using the following: (A) LLM model;
(B) integrated 3D diffuse data; (C) elastic network
NM model. Lighter colors correspond to stronger
intensity. White regions correspond to pixel values
where there are missing values in the corresponding
3D lattice (Methods).
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measurements of ribosome crystals, which indicates that models
should simultaneously account for correlations that are coupled both
within and across unit cell boundaries (18, 20); accounting for lattice
vibrations more accurately also might yield improved Bragg in-
tegration (48). Moreover, comparisons of crystal simulations and
diffuse scattering can provide an additional observable for bench-
marking improvements in energy functions and sampling schemes
(14).
Although the initial successes of dynamics-based models of dif-

fuse scattering indicate that crystal defects can play a secondary
role in contributing to the diffuse signal, at least in some cases,
consideration of crystal defects might become important to achieve
the highest model accuracy and most general applicability of dif-
fuse scattering in crystallography. Additionally, as more X-ray data
from both brighter conventional and X-ray free-electron laser light
sources, accounting for all sources of Bragg and diffuse scattering
will be necessary to model the total scattering needed for in-
novative phasing applications (59). In summary, the datasets pre-
sented here demonstrate that diffuse scattering can now be
routinely collected and that using these data will help us obtain an
increasingly realistic picture of motion in protein crystals, including
integrated descriptions of intramolecular motions, lattice vibra-
tions, and crystal defects.

Methods
Diffuse Data Integration.After conventional crystallization, data collection, and
processing (SI Appendix, Supplementary Text: Methods), image processing was
performed, using the LUNUS collection of diffuse scattering tools (60), to
transform raw images (Fig. 1A) into ones in which the pixel values could be
used to integrate 3D datasets (Fig. 1B). The beam stop and image edges were
masked, as were pixel values outside of the range 1–10,000 photon counts. A
beam polarization correction and solid-angle normalization were applied (60).
Bragg peaks were removed using mode filtering with a mask width of 20 pixels
and a histogram bin of one photon count.

Diffusedata integrationwasperformedusing apython script that calls DIALS
methods within the Computational Crystallography Toolbox (CCTBX) (61, 62).
The script obtains an indexing solution and uses the results to map each pixel
in each diffraction image to fractional Miller indices h′k′l′ in reciprocal space. It
sums the intensities from pixels in the neighborhood of each integer Miller
index hkl and tracks the corresponding pixel counts, while ignoring pixels that
fall within a 1/2 × 1/2 × 1/2 region about hkl. It writes the intensity sums and
pixel counts for each frame on a grid, populated on an Ewald sphere that
varies according to the crystal orientation for each image (Fig. 1C). Lunus
methods were used to obtain a radial scattering vector intensity profile for
each frame, which was used for scaling. The mean diffuse intensity was cal-
culated at each grid point using the scaled sums and pixel counts from all of
the frames. The integration yielded a CypA dataset with 438,627 measure-
ments that is 98% complete to a resolution of 1.4 Å, and a trypsin dataset with
233,381 measurements that is 95% complete to 1.25-Å resolution.

Experimental and model diffuse intensities were compared using just the
anisotropic component of the signal, which is primarily due to the protein (13).
Lunus methods were used to subtract the radial average and obtain the an-
isotropic signal. Intensities were symmetrized by averaging P222-equivalent
points. The comparable degree of symmetry in the CypA and trypsin data
suggests that the measurement of diffuse intensity is robust with respect to the
difference in the phi angle oscillation during data collection (0.5° for CypA vs. 1°
for trypsin).

All images are available onSBGridDataGrid (https://data.sbgrid.org/dataset/68/
for CypA; https://data.sbgrid.org/dataset/201/ for trypsin), and the symmetrized
datasets are available in Datasets S1 and S2.

Simulated Diffraction Images. Diffuse scattering images were simulated using
methods similar to those for data integration. A template framewas used tomap
each pixel to a fractional Miller index. The new value of each pixel was obtained
by linear interpolation between the nearest-neighbor integer points hkl in the
3D diffuse model or data. In the case of the 3D data, the images greatly en-
hanced the diffuse features compared with the raw images (SI Appendix, Figs.
S5 and S6) because of statistical averaging in data integration. For visualization
of simulated images, the minimum pixel value was computed within each pixel-
width annulus about the beam center, and was subtracted from each pixel value
within the annulus. Images were displayed using Adxv version 1.9.10 (63), with
display parameters selected for meaningful comparison of the diffuse features.

TLS Structure Refinement and Diffuse Scattering Model. Three independent TLS
refinements were performed for CypA (SI Appendix, Fig. S2 A–D). The whole-
molecule selection consists of the entire molecule as a single TLS group. The
Phenix selection consists of the eight groups (residues 2–14, 15–41, 42–64, 65–84,
85–122, 123–135, 136–145, and 146–165) identified by phenix.find_tls_groups. The
TLSMD selection consists of eight groups (residues 2–15, 16–55, 56–80, 81–85, 86–
91, 92–124, 125–143, and 144–165) identified by the TLS Motion Determination
web server (6, 7). All TLS refinement was performed within phenix.refine through
five macrocycles. Aside from the inclusion of TLS refinement, these macrocycles
were identical to the initial structure refinement described above.

Similarly, for trypsin, we selected whole-molecule, Phenix, and TLSMD TLS
refinement strategies as described above (SI Appendix, Fig. S2 E–H). The Phenix
selection consists of seven TLS groups: residues 16–54, 55–103, 104–123, 124–140,
141–155, 156–225, and 226–245. The TLSMD selection consists of nine groups:
residues 16–52, 53–98, 99–115, 116–144, 145–171, 172–220, 221–224, 225–237,
and 238–245.

Structural ensembles were generated using the phenix.tls_as_xyz
method (9). One thousand random samples were drawn assuming in-
dependent distributions for each domain. Diffuse intensities were calcu-
lated using phenix.diffuse (8). CypA and trypsin models were generated to a
final resolution of 1.2 and 1.4 Å, respectively.

LLM Model. LLM models of diffuse scattering were calculated using PDB
entries 5F66 (CypA) and 5F6M (trypsin). Temperature factors were set to zero
and squared calculated structure factors I0(hkl) were computed using the
structure_factors, as_intensity_array, and expand_to_p1 methods in CCTBX
(61, 62). The Lunus symlt method was used to complete the grid using the
P222 Laue group.

Given a correlation length γ and amplitude ofmotion σ, the diffuse intensity
at scattering vector s was calculated as DLLMðsÞ= 4π2s2σ2e−4π

2s2σ2 I0ðsÞ*ΓγðsÞ,
with ΓγðsÞ= 8πγ3=ð1+ 4π2s2γ2Þ. Fourier methods in Lunus (fftlt) were used for
the convolution. The linear correlation of the anisotropic intensities with the
data was used as a target function for refinement. Optimization of the target
with respect to γ and σ was performed using the Powell minimization method.

NM Model. The NM model followed methods similar to those of Riccardi et al.
(33). Atomic coordinates and isotropic displacement parameters were obtained
from PDB entries 5F66 (CypA) and 5F6M (trypsin), and were expanded to the P1
unit cell using the iotbx.pdb methods in CCTBX (62). The Hessian matrix H was
defined using a modified anisotropic elastic network model (64), with springs
between Cα atoms (i, j) within a cutoff radius of 25 Å. The spring force constants
were computed as ke−rij=λ, where rij is the closest distance between atoms i and
j, either in the same unit cell or in neighboring unit cells; λ = 10.5 Å; and k = 1
for rij < 25 Å and k = 0 otherwise (the nonzero value of k is arbitrary due to the
normalization used below). Covariances of atom pair displacements vij = Æri · rjæ
were obtained using the pseudoinverse of H as described in ref. 64. The values
of vij were renormalized to ϕij = vijσiσj=ðviivjjÞ1=2 using the isotropic displace-
ment parameters σi of the ith Cα atom from the Bragg refinement; the model
was thus consistent with the refined crystal structure.

The diffuse intensity was computed as DNMðsÞ = P
i

P
j fi f

*
j e−4π

2ðσ2i +σ2j Þs2

ðe−4π2s2ϕij − 1Þ, where fi is the structure factor of the combined atoms in the
residue associated with the ith Cα atom. Structure factors were computed using
a two-Gaussian approximation of atomic form factors; the parameters were
obtained using the eltbx.X-ray_scattering methods in CCTBX (62); phase factors
were applied using the atomic coordinates.

The Bragg intensities were computed from ensembles generated by using
the first 10 nonzero eigenvectors of H with corresponding inverse eigenvalues
as their weights. Because the overall scale of the spring constant was arbitrary
in the NM model (see above), the amplitudes of motion were too large using
the absolute eigenvalues; they were therefore scaled to maintain the con-
nectivity of the backbones. Fifty member ensemble models were generated by
Normal Mode Wizard (NMWiz) (65), which is a VMD (66) plugin. A single B
factor of 10 Å2 was applied to all atoms in the ensemble. Structure factors
were generated using phenix.fmodel and compared with the experimental
data using phenix.reflection_statistics (67).
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Table S1 – Comparison of CypA observed Bragg data vs. calculated from Normal Modes. 
 
 
Resolution (Å) R-factor CC 
44.560-11.070 0.5713 0.4144 
11.070-8.698 0.3325 0.6957 
8.697-6.834 0.2987 0.7324 
6.831-5.369 0.2944 0.788 
5.366-4.217 0.2556 0.8362 
4.216-3.314 0.2592 0.8153 
3.312-2.603 0.3092 0.7586 
2.602-2.045 0.3355 0.6972 
2.045-1.606 0.3602 0.6928 
1.606-1.262 0.41 0.5964 
1.262-1.200 0.4509 0.3817 
All 0.3869 0.855 
 
Table S2 - Comparison of Trypsin observed Bragg data vs. calculated from Normal Modes. 
 
Resolution (Å) R-factor CC 
26.837-10.849 0.511 0.4285 
10.837-8.689 0.3368 0.7372 
8.678-6.955 0.3786 0.6475 
6.937-5.569 0.3312 0.7195 
5.564-4.457 0.2509 0.8368 
4.455-3.569 0.2322 0.8663 
3.568-2.857 0.2684 0.8155 
2.857-2.288 0.2924 0.761 
2.288-1.832 0.2911 0.7678 
1.832-1.467 0.3072 0.7564 
1.467-1.200 0.3271 0.7048 
All 0.3106 0.887 
 
  



Table S3. Refinement statistics for CypA and trypsin models, before TLS modeling is applied. 
 

 
CypA Trypsin 

Resolution range, Å 38.66-1.4 23.29-1.25 

Space group P 21 21 21 P 21 21 21 

Unit cell, Å 42.91, 52.44, 89.12 54.81, 58.51, 67.42 

Completeness (%) 98 95 

Rwork (%) 17.88 15.9 

Rfree (%) 19.5 17.41 

RMS (bonds, Å) 0.007 0.013 

RMS (angles, degrees) 1.16 1.61 

Ramachandran favored % 97 98 

Ramachandran allowed % 3 2 

Ramachandran outliers % 0 0 

Clashscore 0.79 2.59 

Average B-factor, Å2 21.42 14.57 

 
 
  



 

  
Figure S1. Visualization of anisotropic diffuse intensities. (A) Symmetrized CypA experimental data with isosurfaces 
shown using wireframes at a level of 2 photon counts in the resolution range 4.16 Å – 2.97 Å. Positive intensity is 
rendered in green, negative in red.  (B) Isosurfaces for diffuse scattering predicted by the CypA LLM model. (C) Residual 
diffuse scattering (experimental data (A) minus LLM (B)). (D) Symmetrized Trypsin experimental data with isosurfaces 
shown using wireframes at a level of 3 photon counts in the resolution range 4.53 Å – 3.26. (E) Isosurfaces for diffuse 
scattering predicted by the Trypsin LLM model. (F) Residual diffuse scattering (experimental data (D) minus LLM (E)).  
  



 
Figure S2. Rigid body domain definitions used for TLS models. CypA and Trypsin TLS groups shown on the tertiary 
structure for whole molecule (A, E), Phenix (B, F), and TLSMD (C, G) and shown on the primary sequence (D, H).   
 
  



Figure S3: Simulated diffraction images for trypsin frame 45 obtained using: (A) liquid-like motions model; (B) 
integrated 3D diffuse data; (C) elastic network model. 
 
 

 
  



Figure S4: Normal modes models for a) CypA and b) Trypsin. The RCSB deposited structure is shown in blue 
with thicker ribbon. Every 5th ensemble member of the 50 member ensemble is shown in a different color.  
Displacements along the top 10 modes are shown with the sum of squares of displacements equal to 1 Å. 
 
A       B 

 
  



 
Figure S5: Simulation of CypA diffraction images using integrated 3D data. Left: raw processed frame 67, after 
the mode filter step (Methods). Middle: isosurface in anisotropic diffuse intensity at a level of 2 photons, 
displayed using ParaView (http://www.paraview.org/). Right: Simulated diffuse intensity for frame 67 computed 
using 3D diffuse intensity. For each image, the minimum value within each pixel-width ring about origin has 
been subtracted from each pixel value, to enhance the visualization of anisotropic diffuse features. Images are 
displayed using a heat map in Adxv. 
 

 
 
  



Figure S6: Simulation of trypsin diffraction images using integrated 3D data. Left: raw processed frame 45, 
after the mode filter step (Methods). Middle: isosurface in anisotropic diffuse intensity at a level of 3 photons, 
displayed using ParaView (http://www.paraview.org/). Right: Simulated diffuse intensity for frame 45 computed 
using 3D diffuse intensity. Images were processed and displayed as in Fig. S6. 
 

 
 
  



Supplementary Text 
 
Methods 
Protein purification and crystallization 
 
Trypsin crystals were obtained according to the method of Liebschner et.al (1). Lyophilized bovine pancreas 
trypsin was purchased from Sigma-Aldrich (T1005) and dissolved at a concentration of 30 mg/mL into 30mM 
HEPES pH 7.0, 5 mg/mL benzamidine and 3mM CaCl2. Crystals were obtained from a solution of 200mM 
Ammonium sulfate, 100mM Na cacodylate pH 6.5, 20% PEG 8000 and 15% glycerol. CypA was purified and 
crystallized as previously described (2). Briefly, the protein was concentrated to 60 mg/mL in 20mM HEPES pH 
7.5, 100mM NaCl and 500mM TCEP. Trays were set with a precipitant solution of 100mM HEPES pH 7.5, 22% 
PEG 3350 and 5mM TCEP. Both crystal forms were obtained using the hanging-drop method. 
 
Crystallographic data collection 
 
Diffraction data were collected on beamline 11-1 at the Stanford Synchrotron Radiation Lightsource (Menlo 
Park, CA). X-ray diffraction images were obtained using a Dectris PILATUS 6M Pixel Array Detector (PAD). 
Each dataset was collected from a single crystal at an ambient temperature of 273K. To prevent dehydration, 
crystals were coated in a thin film of paratone with minimal surrounding mother liquor. For CypA, a single set of 
0.5 degree oscillation images were collected and used for both Bragg and diffuse data processing. A total of 
360 images were collected across a 180 degree phi rotation. The Trypsin diffraction data consisted of one 
degree oscillations across a 135 degree phi rotation; this dataset was similarly used for both Bragg and diffuse 
data analysis. Both datasets were collected to optimize the Bragg signal, not the diffuse signal. Although not 
used here, we note that data collection using a PAD with fine phi slicing should be especially well suited for 
simultaneous collection of Bragg and diffuse data, as it would enable integration of diffuse intensity at a tunable 
level of detail in reciprocal space. 
 
Bragg data processing 
 Bragg diffraction data were processed using XDS and XSCALE (3) within the xia2 software package (4). 
Molecular replacement solutions were found using Phaser (5) within the Phenix software suite (6). The PDB 
search models were 4I8G for trypsin, and 2CPL for CypA. Initial structural refinement was performed using 
phenix.refine (7). The strategy included refinement of individual atomic coordinates and water picking. Both the 
X-ray/atomic displacement parameters and X-ray/stereochemistry weights were optimized. Isotropic B-factors 
were chosen for the initial structures to allow for non-negligible R-factor optimization by subsequent TLS 
refinement strategies. All structures were refined for a total of 5 macrocycles. Statistics for these initial crystal 
structure models are shown in Supplementary Table S3 and are available along with the structures at 
www.rcsb.org in PDB entries 5F66 (CypA) and 5F6M (trypsin). 
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